

Inverter Catalog

 TABUCHI ELECTRIC CO., LTD.
 Head Office
 Nissay Shin-osaka Bldg., 3-4-30 Miyahara, Yodogawa-ku, Osaka, 532-0003 Japan

 TEL +81-6-4807-3500
 FAX +81-6-4807-3500

 Tokyo Office
 Kinsan Bidg., 3-18-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo, 101-0054, Japan

 TEL +81-3-5259-6250
 FAX +81-3-5259-6251
 http://www.zbr.co.jp INV-E.2016.09.SK-2

Innovate for a sustainable future

The History of the Tabuchi Electric Power Electronics Business

Since its founding in 1925, Tabuchi Electric's core business has been transformer products, and even now, Tabuchi is well known to public as a transformer manufacturer.

In 1976, Tabuchi advanced into the power supply unit business with a focus on the development and deployment of high-frequency transformer technology.

With the deregulation of the electric power industry in 1995, we began to develop the PV solar inverter, a culmination of experience using transformer and power supply unit technology.

Since that time, for over 10 years, PV generation has attracted great interest thanks to the support of the national government and local municipalities, as well as a growth in environmental awareness.

During this period, Tabuchi Electric has continued production and development of solar inverters. We have also accumulated and expanded our knowledge of power electronics technology.

In 2005, in addition to our core consumeroriented business area, Tabuchi Electric advanced into the heavy electrical and industrial field. As a result, we are now able to respond to demands in both consumer and industrial domains.

The knowledge we have accumulated in power electronics technology over the past 10 years has found application in many areas. It is our mission and responsibility to make use of this technology for the global environment.

INDEX

The Superiority

Global Lineup

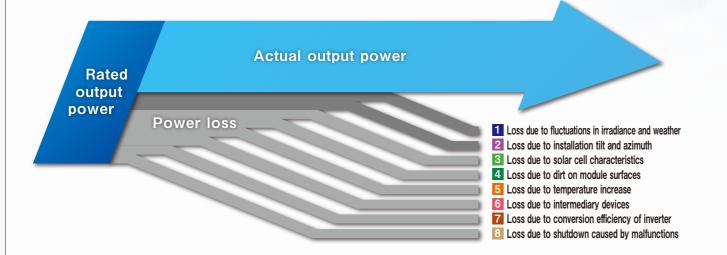
Specifications for Glu Three-phase 25 kW S Stand-alone Inverter,

Monitoring System

Japan Product Lineu

Tabuchi Electric Glo

Consumers are looking for energy solutions that combine three types of technology: energy creation, energy conservation, and energy storage. Electric energy is generated from natural sources and from fuel cells. Energy conservation is achieved through the use of rechargeable batteries that store generated power that is used when needed. The core of this energy management system is the control device, the solar inverter. Through products designed for this environmental era, Tabuchi Electric is making further contributions to society.


	P. 2
	P. 8
obal Products Solar Inverter, EIBS, 3.5/5.5 kW Solar Inverter, Master Box	P.10
	P.38
ID.	P.40
bal Network	P.42
The second s	A Contractor

The Solar Age

PV systems are environmentally friendly and economical, making them ideal for generating power. However, there are currently a host of issues that need to be resolved, from the planning stage to post-installation.

What You Should Know About Power Loss in PV Systems.

There are a number of factors underlying power loss. Let's explain each factor one by one.

Loss due to fluctuations in irradiance and weather

Since it is impossible to avoid fluctuations in insolation due to latitude and climate conditions, it is important to perform adequate simulations when developing the installation plan. Check regional insolation information and other data to build a system that can dependably generate sufficient power under the anticipated conditions mentioned above.

2 Loss due to installation tilt and azimuth

With 100% irradiance at due south, irradiance decreases the more the panel orientation (azimuth) faces to the east or west. The optimum tilt (angle of inclination) for PV panels in Japan is roughly 30°. Multi-MPPT inverters offers more flexibility for PV system design.

3 Loss due to solar cell characteristics

Internal losses in a solar module are varied and linked to the imbalances between solar cells. Voltage imbalances are particularly apt to occur when PV strings are connected in parallel. Current flowing from the higher voltage PV string to a lower voltage PV string results in a voltage drop at the inverter input of the system.

A multi-MPPT system controls voltage loss.

4 Loss due to dirt on module surfaces

Dirt on the surface of the solar panels impedes the system's ability to receive sunlight. Rainfall does not wash away some types of dirt, so the ability to maintain generation capacity is dependent on periodic cleaning. In particular, leaf litter and other foreign matter that has blown onto the panels can reduce irradiation. Partial shading can affect the generation capacity of PV panels and cause loss similar to 3

A multi-MPPT system minimizes loss due to dirt and partial shade.

Loss due to temperature increase

Typically, the conversion efficiency of solar cells decreases as the temperature rises. More power is generated on cool days than hot days when there is a great deal of irradiation. A good design practice provides plenty of airflow around PV panels.

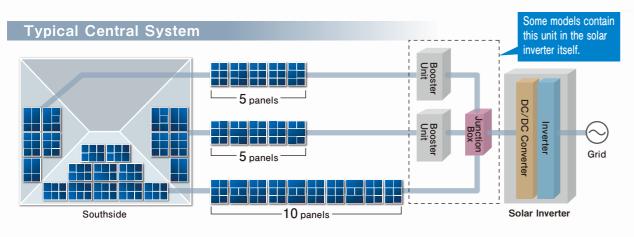
6 Loss due to intermediary devices

Diodes are installed in junction boxes and panel boards to prevent reverse current damage to solar cell modules. However, the operating power of these diodes and the heat generated when they run results in a loss of power. Even more voltage conversion loss occurs when booster units are used. The anticipated nameplate capacity will not be attained if the overall efficiency of the system is not taken into consideration. Built-in junction boxes eliminate loss due to intermediary devices.

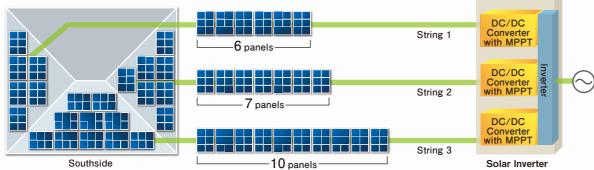
7 Loss due to conversion efficiency of inverter

Conversion efficiency does not account for all loss caused by the solar inverter. When the internal temperature of the inverter increases, its efficiency decreases. Furthermore, a higher grid voltage may also decrease the inverter efficiency. When the inverter is installed indoors, in an enclosed space, temperature monitoring is likely to activate the cooling system. The inverter may shutdown without proper ventilation or cooling.

Outdoor installation reduces loss due to temperature increase.


Loss due to shutdown caused by malfunctions

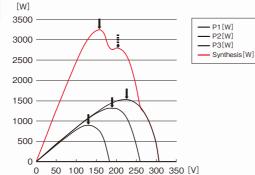
When panels or devices deteriorate or malfunction, the system must be stopped until repairs are made. The longer it takes to detect a malfunction and complete repairs, the greater the decrease in power generated. Even when panels malfunction, multi-MPPT systems continue to generate power.


The Superiority

Multi-MPPT systems reduce power loss

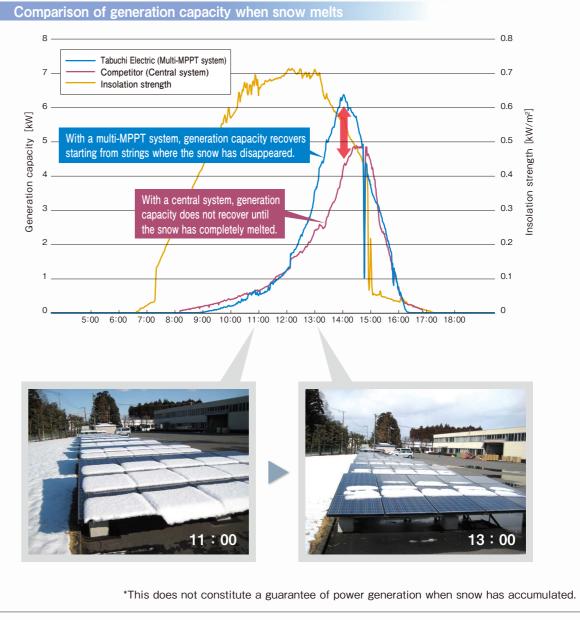
Since a multi-MPPT system can control the voltage input of each string, there is no need to adjust the capacity as with central systems. Installation is simple, there is no need for junction boxes, booster units, or any other such intermediary devices. Also, input connections can be made directly to the inverter without causing intermediate losses. Multiple MPPT makes it possible to combine different types of solar panels. Since devices can now be installed in locations that were previously impossible, installers can make the most effective use of roof surface area for the generation of electric power.

Multi-entry System (Multi-MPPT System) Generation increases! Power loss decreases!



 $\langle {\rm Built-in} \ {\rm junction} \ {\rm box}, \ {\rm no} \ {\rm need} \ {\rm for} \ {\rm a} \ {\rm booster} \ {\rm unit} \rangle$ *String-level monitoring is possible.

Maximum Power Point Tracking (MPPT)


Since there are multiple input peaks* in a central inverter design, the maximum power point can be lost. However, with a multi-MPPT inverter, MPPT control is used on each string, so it typically attains the maximum power point.

*The maximum power point is the peak of the P-V (power-voltage) curve.

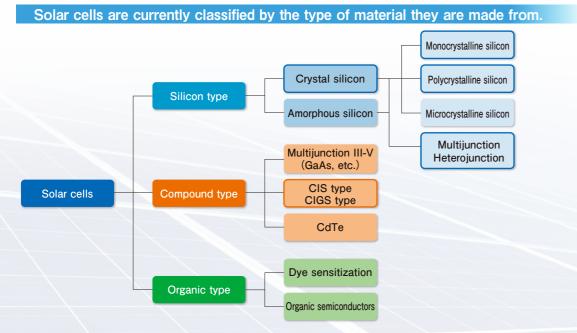
The Multi-MPPT Inverters: See the Difference! Comparison Study: Generation capacity when snow melts

The following chart shows the amount of generation the day after snowfall in Japan. There is a significant difference in the recovery of power generation capacity between a multi-MPPT system and a central system as the snow on the panels melts. (Actual data from the Tabuchi Electric Renewable Energy Research Center in Japan)

The Superiority

Supports a wide variety of panels

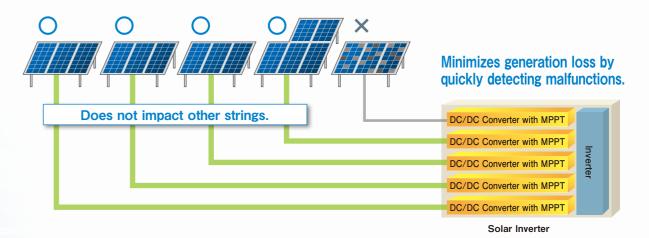
Thanks to steady progress and technical innovation, new types of PV panels are constantly making inroads into the market.


Our solar inverters are designed with a wide range of input parameters to support different types of PV panels.

The Tabuchi Electric Renewable Energy Research Center evaluates new panels from each manufacturer. Data is collected and verified by testing the panels under natural conditions for an extended period of time.

Test combining PV panels and solar inverters

Solar Cells: Types & Characteristics


Туре		Features
Silicon type	Monocrystalline	Although monocrystalline solar cells excel in performance and reliability, substrate prices are high.
	Polycrystalline	These solar cells have polycrystalline silicon substrates. Although conversion rates are lower than monocrystalline panels, these panels dominate the market because they are cheaper and easier to make.
	Amorphous	This type of solar cell uses an amorphous silicon film on a glass substrate. Although conversion efficiencies are less than crystalline systems, they can be mass produced for large surfaces.
	Multi-contact type	Solar cells with multiple layers of silicon film. This method uses smaller amounts of silicon and lends itself to the mass production of large surface areas. Since these panels absorb a wide band of wavelengths, they are more efficient than amorphous solar cells.
Compound type	CIS system CIGS system	Solar cells made using copper, indium, gallium, selenium, and other compounds. They are thin so they conserve resources and are easily mass produced. They offer high performance, so a great deal of work is being done on their development.

The Superiority Ease of maintenance & repair

Solar panels degrade over their lifespan. Years of use and potential damage to the panels may reduce their power output. The causes of these problems are not visible, so output gradually declines. Loss will continue to occur until the problems are discovered and repairs are made. Also, if a malfunctioning panel remains connected to the system, it can have a negative impact on other panels. Timely maintenance is important to ensure consistent generation capacity. However, the multi-MPPT solar inverter is designed to minimize loss and reduce the burden on customers as much as possible after installation.

Steps taken to minimize loss

In our multi-MPPT system, each string is independent of the other strings. Even if some panels in a particular string malfunction, the other strings remain unaffected. Since strings can be turned on and off individually, the malfunctioning string can be electrically isolated. The system can continue to generate power until the malfunctioning string is repaired.

Also suitable for large-scale generation!

With our multi-MPPT systems, panel generation data can be collected for each string so decreases in output can be detected early on. Also, since exactly which panel is defective can be identified, maintenance can be performed without delay. Therefore, loss is minimized when the system is shut down for routine maintenance or when a malfunction occurs.

<section-header></section-header>	<image/>	PEnetelus Pinetelus			anada Models	Tenefelus			
3.5	5/5.5 kW Solar Inverter Master Box Thr	ee-phase 25 kW Solar Inverter	-	Three-phase 25 k	W Solar Inverter	Master Box	11	EIBS	
Product Name	Certification	Energy Source	Applications	Installation Location	Installation Method	Number of Strin	ngs Topology	Display/Operation	
USA/Canada Models									
Three-phase 25 kW Solar Inverter EPW-T250P6-US	ETL (UL1741/1699B, CSA C22.2 No. 107.1-01 IEEE 1547a, CEC) FCC Class A	Solar	Power Plant	Outdoor	Rack-mounted	6	Transformer-less	Chassis-embedded Master Box	≫ P.10
Three-phase 25 kW Solar Inverter TPD-T250P6-US	Pending (Applied for UL1741/1699B, CSA C22.2 No. 107.1-01 IEEE 1547a, CEC, FCC Class A)	Solar	Power Plant	Outdoor	Rack-mounted	6	Transformer-less	Chassis-embedded Master Box	≫ P.14
EIBS*1 Hybrid Solar Inverter with Embedded Battery EHW-S55P3B-PNUS EOW-LB100-PNUS	Inverter: ETL (UL1741/1699B/60950-1, CSA C22.2 No. 107.1/No. 60950-1, IEEE 1547a, CEC, Hawaii requirement) FCC ClassB Battery: ETL (UL1973, CSA C22.2 No. 60950-1)	Solar Battery	Home Facility	Outdoor (Battery unit must be installed indoors)	Floor-mounted	3	High Frequency Isolated Transformer	Color LCD Remote Controller	≫ P.18
Thailand Models									
3.5 kW/5.5 kW Solar Inverter EPC-A-S35MPT EPC-A-S55MPT	PEA, MEA	Solar	Home Apartment	Outdoor	Wall-mounted	2 3	High Frequency Isolated Transformer		≫ P.24
Three-phase 25 kW Solar Inverter TPD-T250P6-TH	Pending (Applied for PEA)	Solar	Power Plant	Outdoor	Rack-mounted	6	Transformer-less	Chassis-embedded Master Box	≫ P.28
Global Model									
Stand-alone Inverter*2 TDS001 TDS002	Discontinued products	Solar Battery	Home Emergency	Indoor	Wall-mounted	1	High Frequency Isolated Transformer		≫ P.32

*1 EIBS…Eco Intelligent Battery System *2 Please conform to country-specific standards and regulations.

EPW-T250P6-US Three-phase 25 kW Solar Inverter

For High Voltage Grid-tied Utility Systems

Space-saving inverter for distributed generation. Simple to install and maintain, and allows for detailed monitoring.

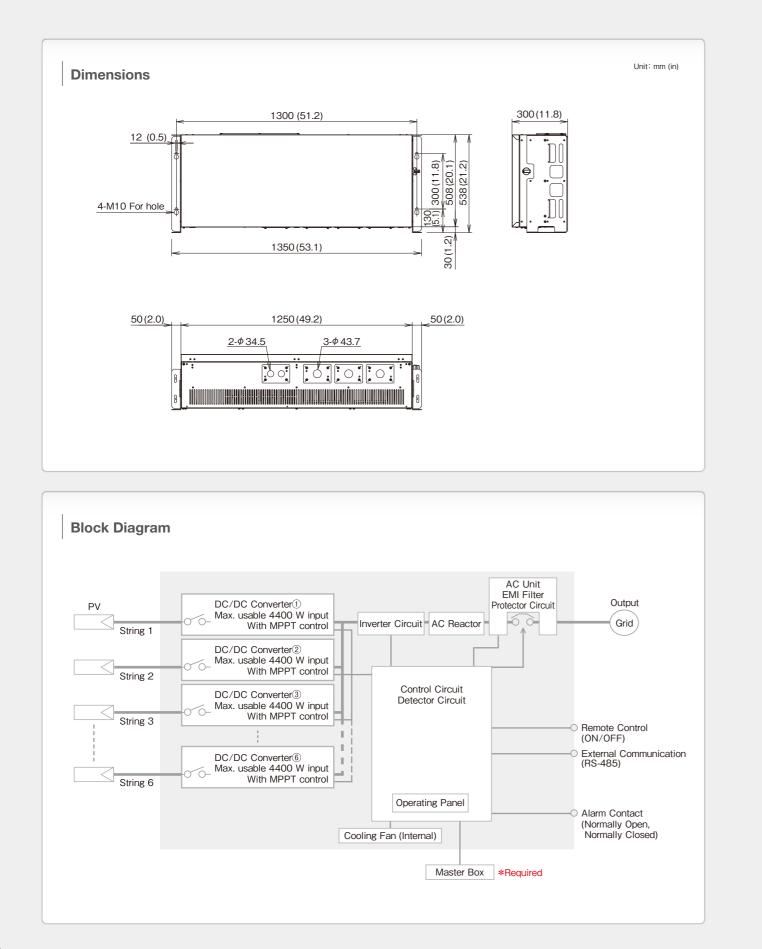
- **1** 6 MPPT Input Strings Max. 4.4 kW usable input DC/DC Converter x 6 Strings
- 98.5% (CEC 97.5%) Efficiency SiC Power Diode and 3 Level Inverter 2
- Three-phase 480 V AC Output Lower BOS cost 3
- Highly corrosion-resistant enclosure 4
- Eliminates the need for combiner boxes All PV module strings terminate at the Inverter 5
- 6 Monitoring and parameter setting via Master Box

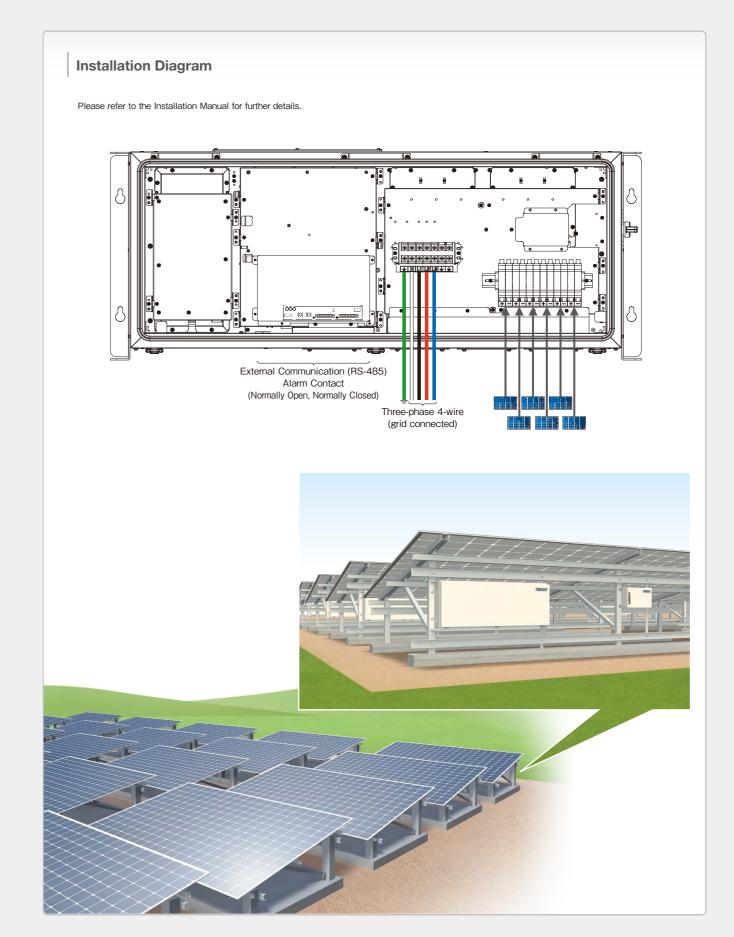
Specifications

Input (DC)	
Usable input power per string	Rated: 4200 W, Max: 4400 W
Max. input voltage	1000 V
Operation voltage range/rated input voltage	140 to 880 V/700 V
MPPT voltage range	500 to 800 V
Min. input voltage/start voltage	140 V/200 V
Number of MPPT inputs	6
Max. input operating current per string	10 A
Output (AC: Grid connected)	
Grid connection type	Three-phase, 4-wire + Ground
Conversion method	Vector modulation method
Rated output power*1	25000 W
Rated AC voltage	480 V (277 V WYE)
Nominal AC voltage range	422.4 to 528 V
Rated grid frequency/Range	60 Hz/59.5 to 60.5 Hz
Output current	Rated: 30 A, Max: 31 A
Power factor at rated output power	≧ 0.99
Distortion rate of the output current	Total: less than 5%
Efficiency	
Efficiency	Max. 98.5% (DC700 V, 50% out
Protection	
Islanding operation detection: Passive	Frequency change detective me
Islanding operation detection: Active	Frequency shifting method
General Data	
Dimensions (W/H/D)	1350/538/300 mm (53.1/21.2/1
Weight	90.5 kg (199 lb)
Installation location	Outdoor
Operating temperature range	-20°C to +50°C (-4°F to +122°I
Noise emission (typical)	≦ 50 dB (for reference)
Internal consumption (night)	< 12 W
Topology	Transformer-less
Cooling concept	Internal air circulation
Enclosure rating	Type 3R
Features	
Constant power factor control	80% to 100%
DC terminal	Terminal block $(+, -) \times 6$
AC terminal	Terminal block (L1, L2, L3, N)
Grounding terminal	Terminal block (3 poles)
Contact point output circuit	Yes
Controller	Master Box (Required)
Master Box for output control	EOW-MBX03-US
Interface	RS-485
Certification	ETL (UL1741/1699B, CSA C22. FCC class A

*1 When the Power factor is 100% during inverter operation

	والمحاصر فرارية والفارين المحمو والمراجع والم	An Incompany Alexandra di sed	
ecifications or aspects of appearance may	be changed without notice	e to improve the product.	


11


uency shifting method 0/538/300 mm (53.1/21.2/11.8 in) kg (199 lb) °C to +50°C (-4°F to +122°F)/Rated output until +40°C (+104°F) 0 dB (for reference) sformer-less rnal air circulation to 100% ninal block $(+, -) \times 6$ ninal block (L1, L2, L3, N) ninal block (3 poles) ter Box (Required) V-MBX03-US (UL1741/1699B, CSA C22.2 No. 107.1-01, IEEE1547a, CEC), class A

98.5% (DC700 V, 50% output), Typ. 97.7%/CEC 97.5%

tor modulation method

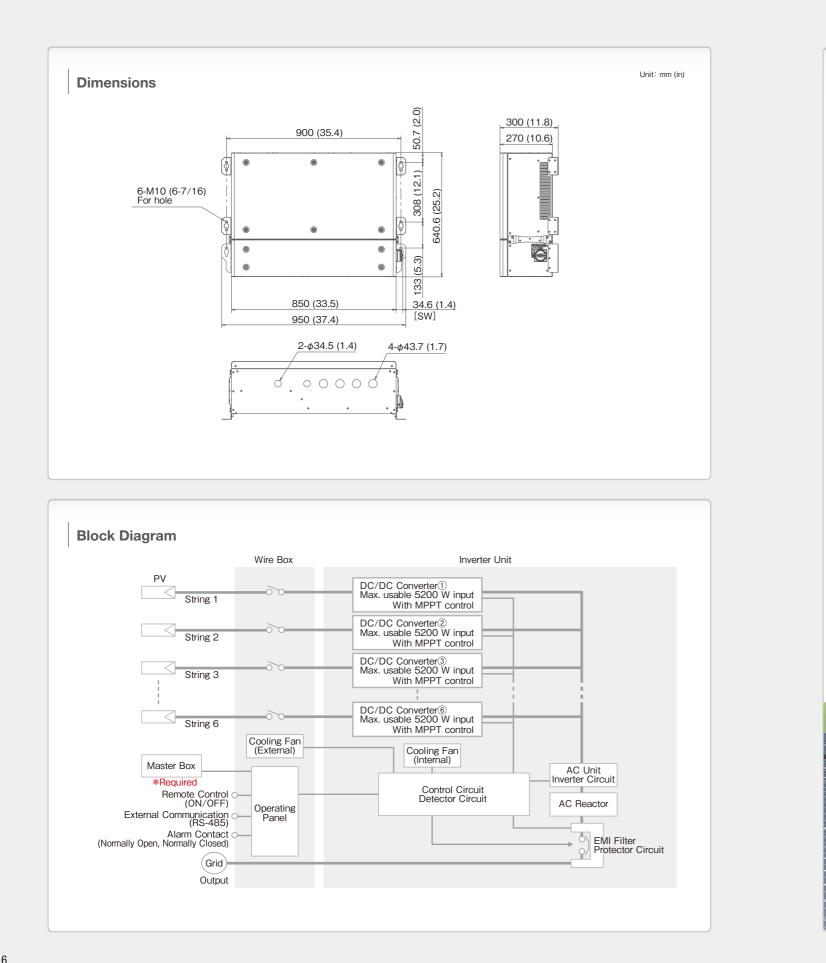
uency change detective method

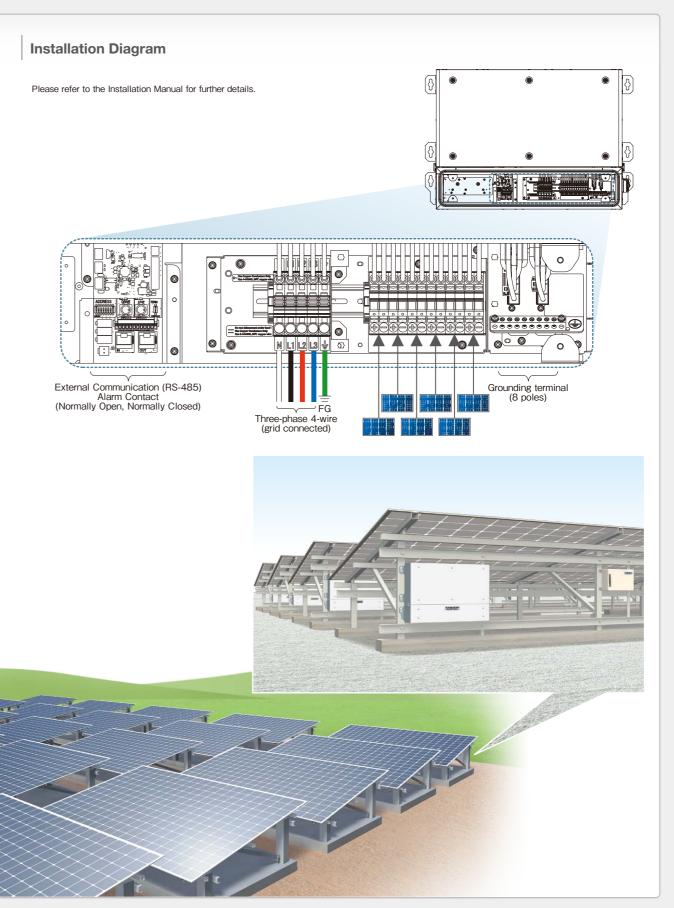
TPD-T250P6-US Three-phase 25 kW Solar Inverter

EOW-MBX03-US (Required)

For High Voltage Grid-tied Utility Systems

Space-saving inverter for distributed generation. Simple to install and maintain, and allows for detailed monitoring. This inverter is smaller, lighter and has superior workability.


- **1** 6 MPPT Input Strings Max. 5.2 kW usable input DC/DC Converter x 6 Strings
- 2 98.7% Efficiency 3 Level Inverter
- Three-phase 480 V AC Output Lower BOS cost 3
- Highly corrosion-resistant enclosure 4
- 5 Eliminates the need for combiner boxes All PV module strings terminate at the Inverter
- 6 Monitoring and parameter setting via Master Box


Specifications

Input (DC)	
Usable input power per string	Rated: 4300 W, Max: 5200 W
Max. input voltage	1000 V
Operation voltage range/rated input voltage	200 to 1000 V/700 V
MPPT voltage range	500 to 800 V
Min. input voltage/start voltage	200 V/200 V
Number of MPPT inputs	6
Max. input operating current per string	10 A
Output (AC: Grid connected)	
Grid connection type	Three-phase, 4-wire + Ground
Conversion method	Vector modulation method
Rated output power*1	25000 W
Rated AC voltage	480 V (277 V WYE)
Nominal AC voltage range	422.4 to 528 V
Rated grid frequency/Range	60 Hz/59.5 to 60.5 Hz
Output current	Rated: 30 A, Max: 35 A
Power factor at rated output power	≧ 0.99
Distortion rate of the output current	Total: less than 5%
Efficiency	
Efficiency	Max. 98.7% (DC700 V, 30% output)
Protection	
Islanding operation detection: Passive	Frequency change detective method
Islanding operation detection: Active	Frequency shifting method
General Data	
Dimensions (W/H/D)	950/640.6/300 mm (37.4/25.2/11.8 in)
Weight	69.8 kg (153.9 lb)
Installation location	Outdoor
Operating temperature range	-20°C to +60°C (-4°F to +140°F)/Rated output until +40°C (+104°F)
Noise emission (typical)	≤ 50 dB (for reference)
Internal consumption (night)	< 7 W
Topology	Transformer-less
Cooling concept	Forced air cooling
Enclosure rating	Type 3 (NEMA 3 equivalent)
Features	
Constant power factor control	80% to 100%
DC terminal	Terminal block $(+, -) \times 6$
AC terminal	Terminal block (L1, L2, L3, N)
Grounding terminal	Terminal block (FG + 8 poles)
Contact point output circuit	Yes
Controller	Master Box (Required)
Master Box for output control	EOW-MBX03-US
Interface	RS-485
Certification	Pending (Applied for UL1741/1699B, CSA C22.2 No. 107.1-01, IEEE1547a, CEC, FCC class A)

*1 When the Power factor is 100% during inverter operation

Some specifications or aspects of appearance may be changed without notice to improve the product.

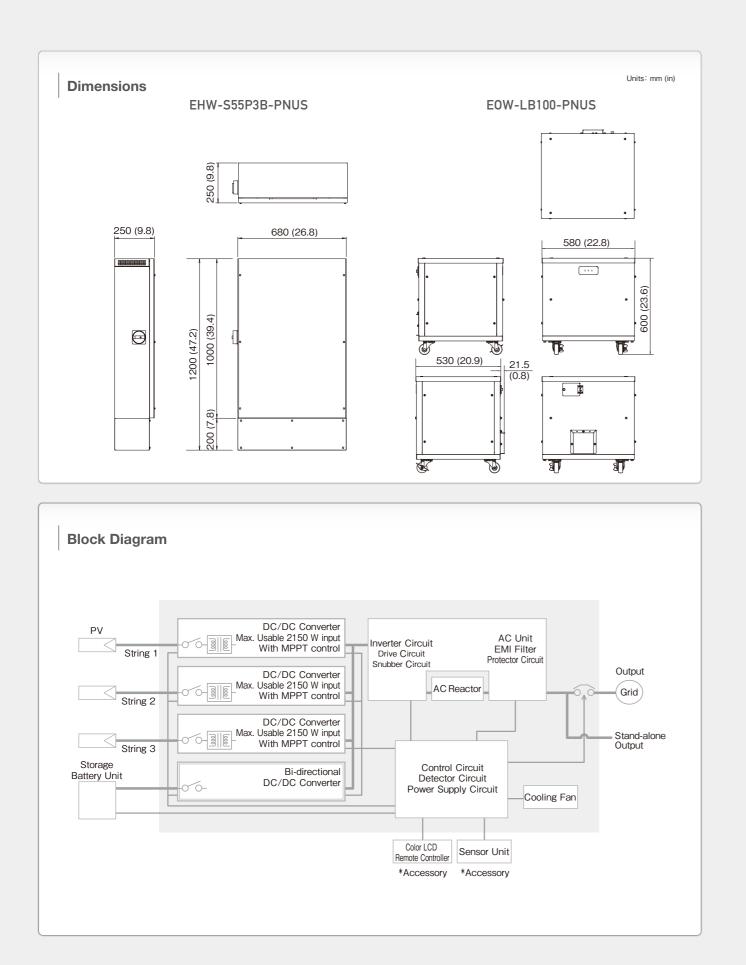
[EIBS]* EHW-S55P3B-PNUS EOW-LB100-PNUS Hybrid Solar Inverter with Embedded Battery

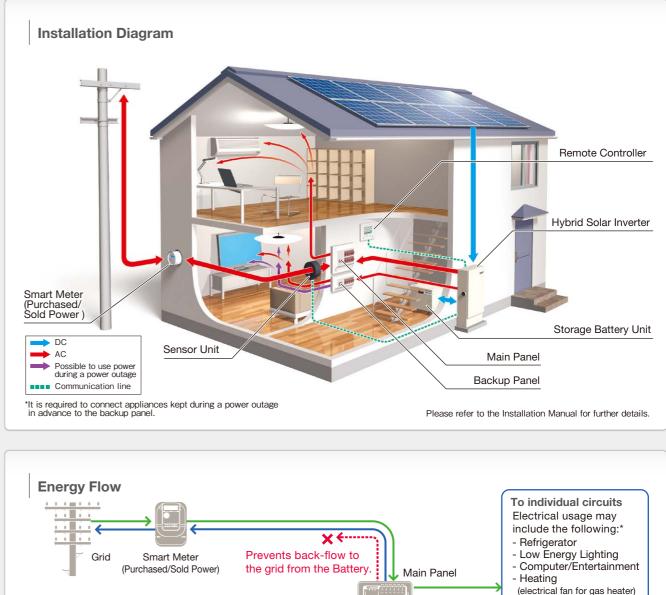
*Eco Intelligent Battery System

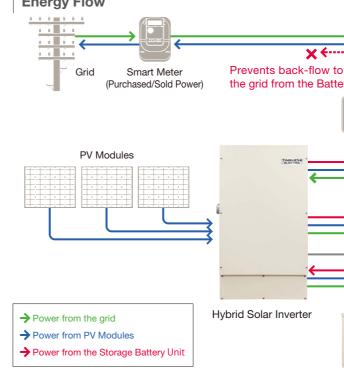
ZREM-35TEB01-US

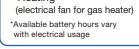
Smarter power use and storage

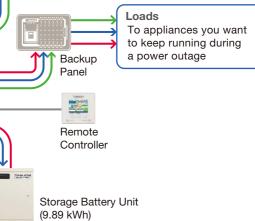
Storage batteries are an effective way to store solar power and facilitate utility rate "peak cutting". Charge batteries from the grid or PV modules. Patented software prevents arbitrage of power export from battery to grid. Capable of being used as a stand-alone system during power outages.

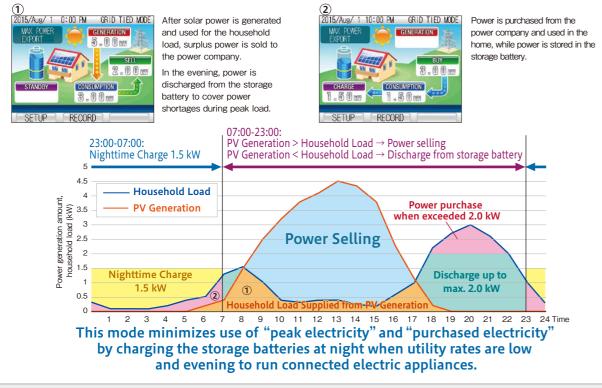

TABUCHI


- 1 3 MPPT 5.5 kW solar inverter
- 2 Bi-directional DC to DC battery converter
- 3 Automatic transfer switch
- Battery charge controller (BATTERY MANAGEMENT SYSTEM) 4
- **5** 9.89 kWh lithium ion battery
- 6 Easy remote controlled setup
- 7 Solar and battery remote monitoring

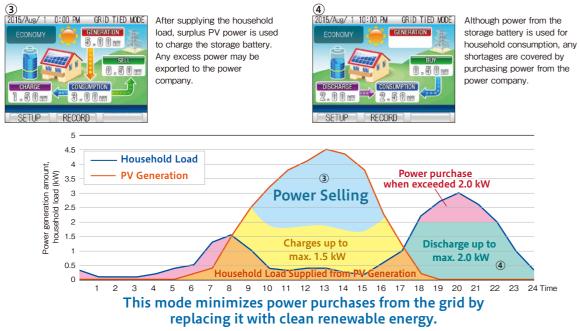

Specifications


opecifications	
Input (DC: Photovoltaic)	
Usable input power per string	Rated: 2000 W, Max: 2150 W
Max. input voltage	450 V
Operation voltage range/rated input voltage	80 to 450 V/250 V
Min. input voltage/starting voltage	80 V/100 V
Number of MPPT inputs	3
Max. input operating current per string	10.3 A
Charge/Discharge (DC: Battery)	
Compatible battery model	EOW-LB100-PNUS *1
Storage capacity	Typical 9.89 kWh (Rated 9.48 kWh)
Number of input circuit	1 circuit
Charge power	1.5 kW *2
Discharge power	2.0 kW *2
Conversion method (Charge)	Grid connected operation: PWM method by power command (Constant current, constant voltage control)
	Standalone operation: Bus voltage stabilization PWM method (Constant current, constant voltage control
Conversion method (Discharge)	Grid connected operation: PWM method by power command / Standalone operation: Bus voltage stabilization PWM method
Output (AC: Grid connected)	
	Single phase 2 wire type (connected to single phase 2 wire type)
Grid connection type	Single-phase, 2-wire type (connected to single-phase, 3-wire type) Voltage type current controller method
Conversion method	
Rated output power*3	5500 W
Rated AC voltage	240 V
Nominal AC voltage range	211.2 to 264 V
Rated grid frequency/Range	60 Hz/58.0 to 62.0 Hz
Output current	Rated: 22.9 A, Max: 25.2 A
Power factor at rated output power	≥ 0.95
Distortion rate of the output current	Total: less than 5%, Each: less than 3%
Output (AC: Stand alone)	
Grid connection type	Single-phase, 2-wire
Conversion method	Voltage type voltage controller method
Rated output power	Max. 2.0 kVA*4
Rated output voltage	120 V ±5 V
Efficiency (Solar)	
Efficiency (typical)	Max. 93.3% (DC300 V, 75% output), Typ. 92.5%/CEC 91.5%
Protection	
Islanding operation detection: Passive	Frequency change rate detection method
Islanding operation detection: Active	Frequency feedback method with step implantation
General Data	
Inverter dimensions (Including base)	680/1200/250 mm (26.8/47.2/9.8 in)
Battery dimensions (W/H/D)	580/600/551.5 mm (22.8/23.6/21.7 in) *Includes the castors
Inverter weight (Including base)	76 kg (168 lb)
Battery weight	110 kg (243 lb)
Installation location	Outdoor (Battery unit must be installed indoors)
Operating temperature range (Inverter)	-20° C to $+40^{\circ}$ C (-4° F to $+104^{\circ}$ F)
Operating temperature range (Battery)	0°C to +40°C (+32°F to +104°F)
Noise emission (typical)	$\leq 45 \text{ dB}$
Topology	High frequency isolated transformer method
Cooling concept	Forced air cooling
Enclosure rating (Inverter)	NEMA 3R
Features	
DC terminal	Terminal block $(+, -) \times 4$
AC terminal	Terminal block (L1, L2, N)
Stand-alone terminal	Terminal block (L, N)
Grounding terminal	Terminal block (2 poles)
Display	None
Remote controller	Accessory
Cable (Remote controller)	Accessory
Interface	RS-485
Certification (Inverter)	ETL (UL1741/1699B/60950-1, CSA C22.2 No. 107.1/No. 60950-1,
	IEEE1547a, CEC, Hawaii requirement), FCC class B
Certification (Battery)	ETL (UL1973, CSA C22.2 No. 60950-1)
*1 The investor is designed for the better (FOW) D100 DNU(0) to 1	

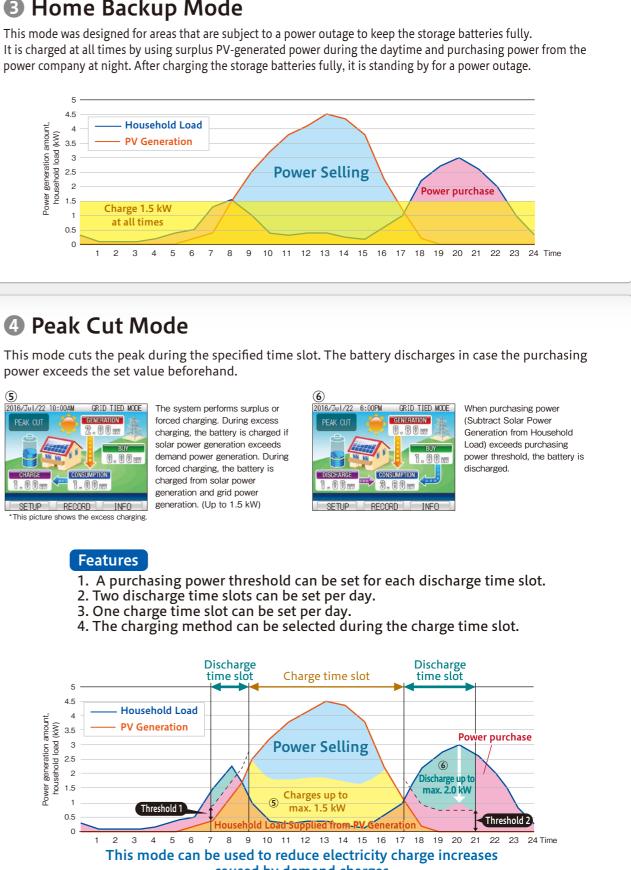

¹ The inverter is designed for the battery (EOW-LB100-PNUS). *² Limited periods of maximum output. *³ Value calculated when all strings were in use. *4 When power is supplied to electric appliances connected to the stand-alone outlets, inrush current may trip protective devices and prevent the appliances from running.



Four Operating Modes – Max Power Export, Economy, Home Backup and Peak Cut


Max Power Export Mode

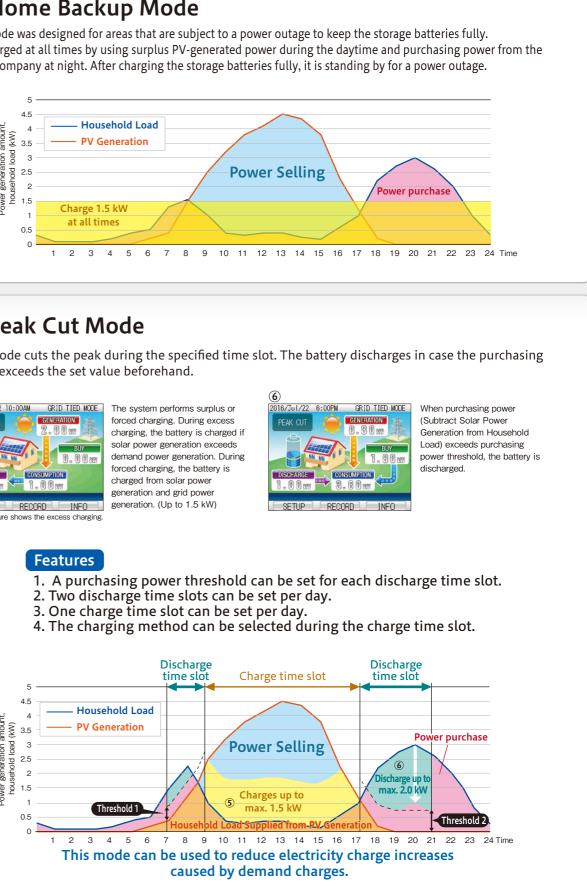
The most economical mode of electric power is through the charging and discharging of storage batteries. This mode prioritizes selling PV-generated power during the day. It uses the power stored in the battery to cover the household load in the evening when demand is high. The battery is charged overnight when power rates are low to compensate for the power used during the daytime and the evening.



Economy Mode

This mode increases energy savings by increasing self-generated power, thus reducing power purchased from the grid. This mode stores in the storage batteries surplus PV-generated power during the daytime and discharges power in the evening and overnight to cover the household load.

Home Backup Mode



Peak Cut Mode

power exceeds the set value beforehand.

This picture shows the excess charging

22

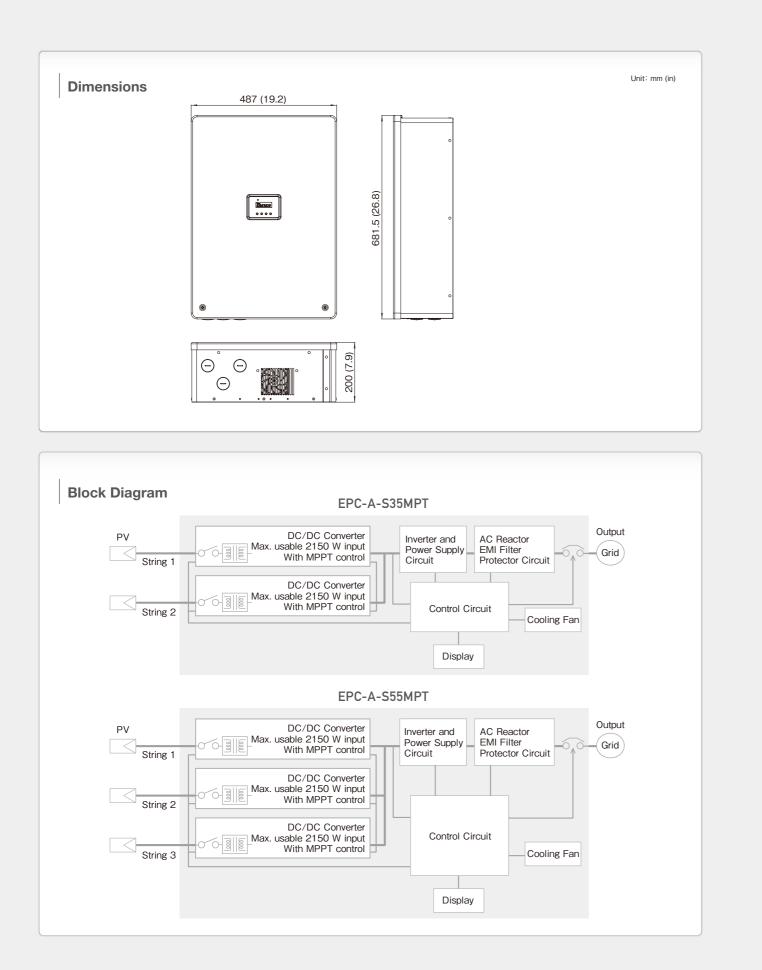
Some specifications or aspects of appearance may be changed without notice to improve the product. 23

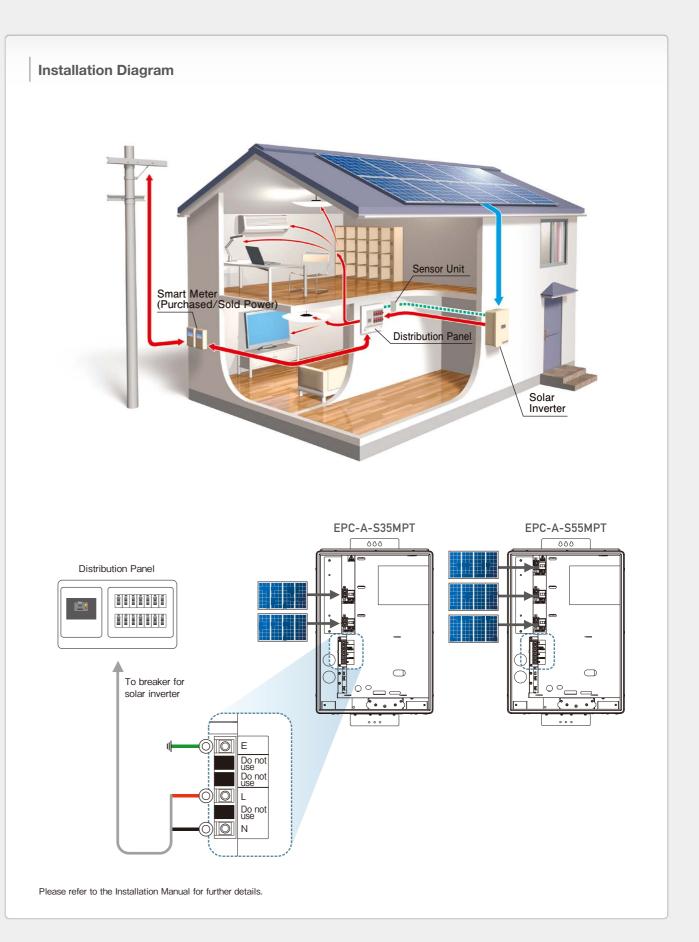
EPC-A-S35MPT/EPC-A-S55MPT 3.5 kW/5.5 kW Solar Inverter

MFA

For residential use

This galvanic isolating inverter is designed for residential rooftops. Equipped with a high frequency transformer. Two MPPT input string options: 3.5 kW (2 strings) or 5.5 kW (3 strings). Compatible with all types of solar cells.


- 1 Individual MPPT PV input string x 2 (3.5 kW)/x 3 (5.5 kW)
- 2 Max. DC input 2.15 kW/450 V per string
- **3** High frequency isolation transformer
- 4 Easy outdoor installation Junction boxes or booster units are unnecessary



Input (DC)	
Usable input power per string	Rat
Max. input voltage	
Operation voltage range/rated input voltage	
MPPT voltage range	
Min. input voltage/starting voltage	
Number of MPPT inputs	
Max. input operating current per string	
Output (AC: Grid connected)	
Grid connection type	
Conversion method	
Rated output power*1	
Rated AC voltage	
Nominal AC voltage range	
Rated power frequency/Range	
Output current	Rated: Rated
Power factor at rated output power	
Power factor control	
Active power control	
Distortion rate of the output current	
Efficiency	
Efficiency	Max. 94
Protection	
Islanding operation detection: Passive	
Islanding operation detection: Active	
General Data	
Dimensions (W/H/D)	
Weight	
Installation location	
Operating temperature range	
Noise emission (typical)	
Internal consumption (night)	
Topology	
Cooling concept	
Enclosure rating	
Features	
DC terminal	Т
AC terminal	
Grounding terminal	
Display	
Interface	
Certification	
¹ Value calculated when all strings were in use.	

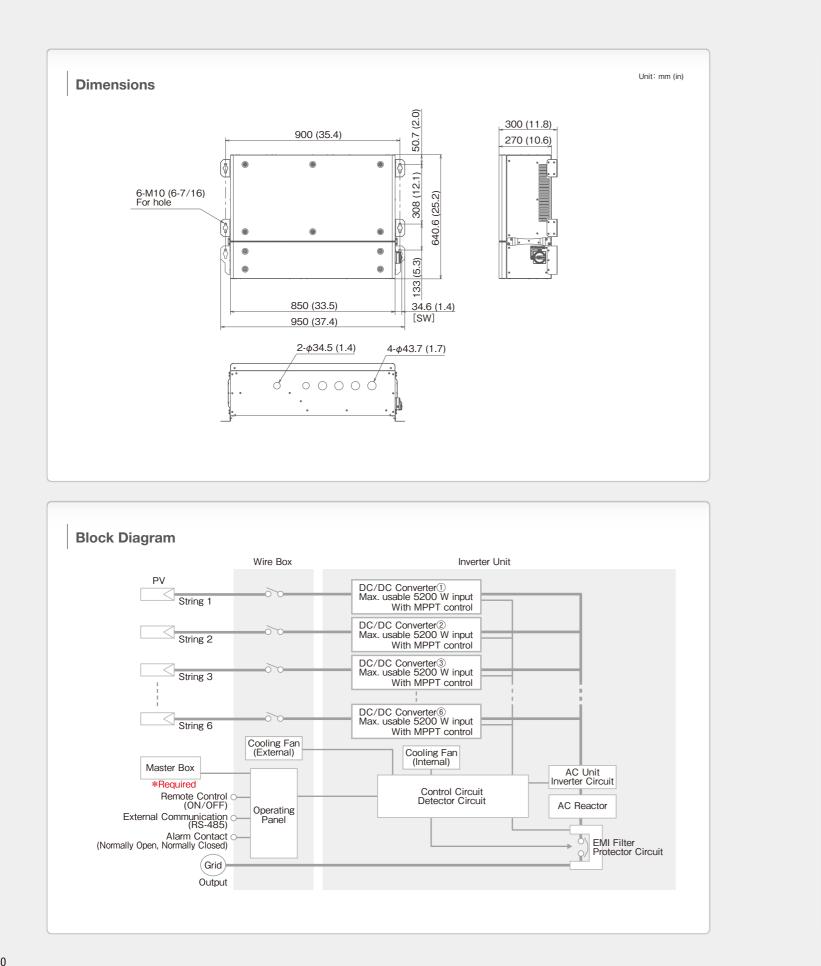
Value calculated when all strings were in use.

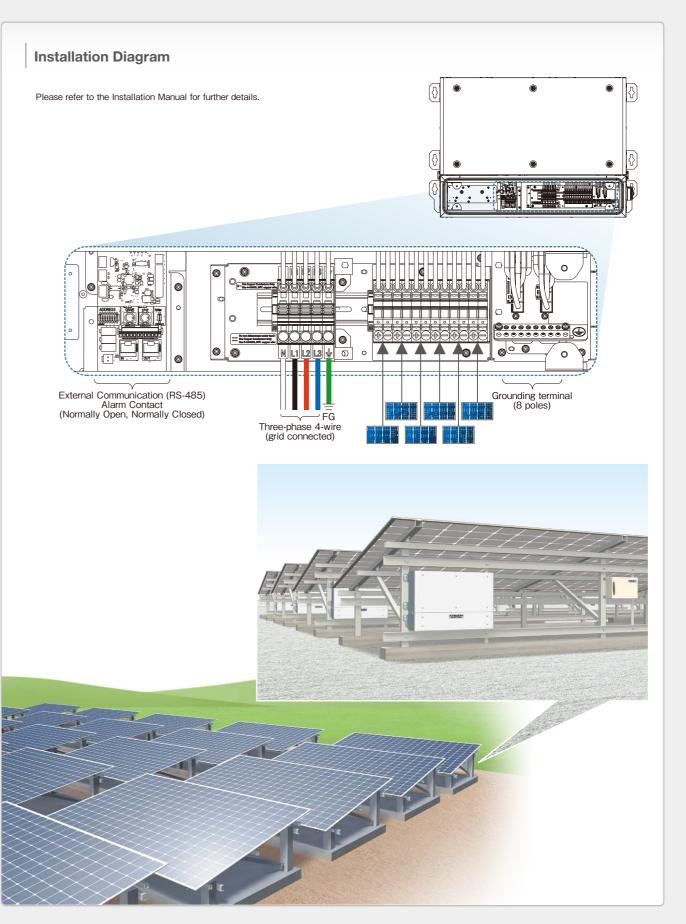
EPC-A-S35MPT	EPC-A-S55MPT
ated: 1862 W, Max: 2150 W	Rated: 1950 W, Max: 2150 W
450	0 V
80 to 450) V/250 V
80 to	450 V
80 V/	100 V
2	3
10.	3 A
Single-phase	e, 2-wire type
Voltage type curren	t controller method
3500 W	5500 W
220 V (PEA)/	230 V (MEA)
198 to 242 V (PEA)/	200 to 240 V (MEA)
50 Hz/48.0 to 51.0 Hz (PE	A), 49.0 to 51.0 Hz (MEA)
d: 15.2 A, Max: 19.25 A (MEA) ed: 15.9 A, Max: 19.4 A (PEA)	Rated: 23.9 A, Max: 30.25 A (MEA) Rated: 25A, Max: 30.5 A (PEA)
≧ 0	.99
lag 0.95 to lea	ad 0.95 (PEA)
Availabl	e (PEA)
Total: less than 5%,	Each: less than 3%
94.6% (DC250 V, 70% output), Typ. 94.3%	Max. 94.5% (DC250 V, 60% output), Typ. 94.0%
Frequency change ra	te detection method
Frequency feedback meth	od with step implantation
487/681.5/200 mm	n (19.2/26.8/7.9 in)
23 kg (51 lb)	26 kg (56 lb)
Outo	loor
−20°C to +45°C (-4°F to +113°F)
< 44	4 dB
< 1	0 W
High frequency isolate	d transformer method
Forced ai	r cooling
IP55 eq	uivalent
Terminal block $(+, -) \times 2$	Terminal block $(+, -) \times 3$
Terminal b	
Terminal blo	
LED d	
RS-	
PEA,	
·,	

TPD-T250P6-TH Three-phase 25 kW Solar Inverter

EOW-MBX04-TH (Required)

For High Voltage Grid-tied Utility Systems


Space-saving inverter for distributed generation. Simple to install and maintain, and allows for detailed monitoring.


- **1** 6 MPPT Input Strings Max. 5.2 kW usable input DC/DC Converter x 6 Strings
- **2** 97.4% Efficiency 3 Level Inverter
- Three-phase 380 V/400 V (PEA/MEA) AC Output Lower BOS cost 3
- Highly corrosion-resistant enclosure 4
- Eliminates the need for combiner boxes All PV module strings terminate at the Inverter 5
- 6 Monitoring and parameter setting via Master Box

Specifications

Input (DC)	
Usable input power per string	Rated: 4300 W, Max: 5200 W (PEA)
Max. input voltage	1000 V
Operation voltage range/rated input voltage	200 to 1000 V/700 V
MPPT voltage range	500 to 800 V
Min. input voltage/start voltage	200 V/200 V
Number of MPPT inputs	6
Max. input operating current per string	10 A
Output (AC: Grid connected)	
Grid connection type	Three-phase, 4-wire + Ground
Conversion method	Vector modulation method
Rated output power*1	25000 W
Rated AC voltage	380 V (220 V WYE) (PEA)
Nominal AC voltage range	342 to 418 V (198 to 242 V WYE) (PEA)
Rated grid frequency/Range	50 Hz/48.0 to 51.0 Hz (PEA)
Output current	Rated: 38 A, Max: 40 A (PEA)
Power factor at rated output power	≧ 0.99
Distortion rate of the output current	Total: less than 3%, Each: less than 3%
Efficiency	
Efficiency	Max. 97.4% (DC880 V, 75% output)
Protection	
Islanding operation detection: Passive	Frequency change detective method
Islanding operation detection: Active	Frequency shifting method
General Data	
Dimensions (W/H/D)	950/640.6/300 mm (37.4/25.2/11.8 in)
Weight	69.8 kg (153.9 lb)
Installation location	Outdoor
Operating temperature range	-20°C to +60°C (-4°F to +140°F)
Noise emission (typical)	≦ 50 dB (for reference)
Internal consumption (night)	< 12 W
Topology	Transformer-less
Cooling concept	Forced air cooling
Enclosure rating	Type 3 (NEMA 3 equivalent)
Features	
Constant power factor control	80% to 100%
DC terminal	Terminal block $(+, -) \times 6$
AC terminal	Terminal block (L1, L2, L3, N)
Grounding terminal	Terminal block (FG + 8 poles)
Contact point output circuit	Yes
Controller	Master Box (Required)
Master Box for output control	EOW-MBX04-TH
Interface	RS-485
Certification	Pending (Applied for PEA)

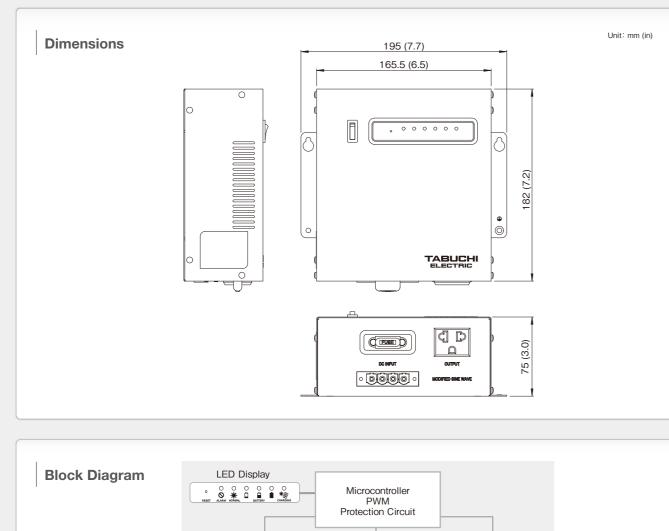
*1 When the Power factor is 100% during inverter operation at 380 V, 50 Hz.

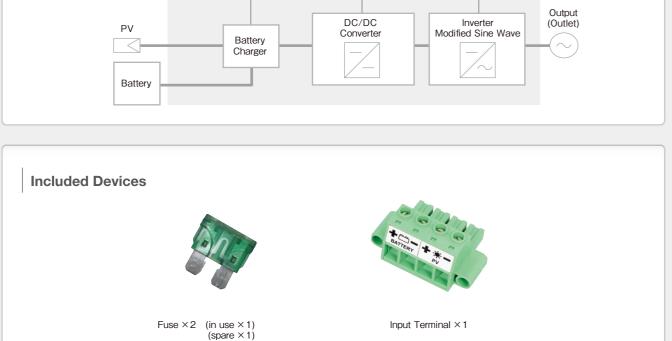
TDS001/TDS002 **Stand-alone Inverter**

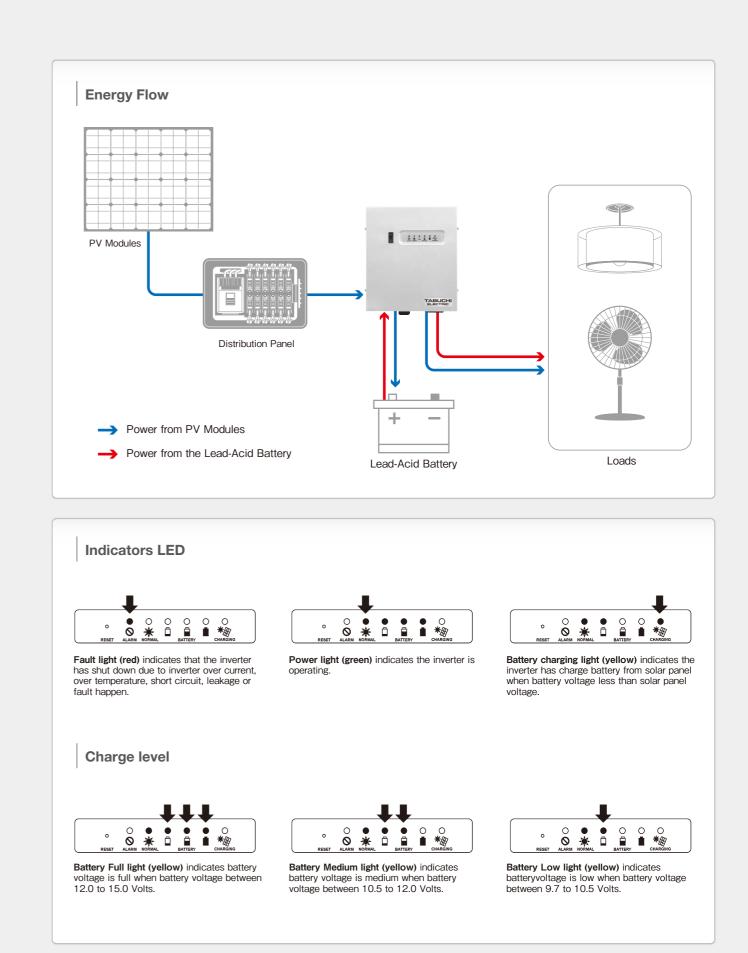
Energy Source		Applic	ations	
Solar Battery	Home	Leisure	Emergency	No Electricity

Discontinued products

Compact Stand-alone Inverter

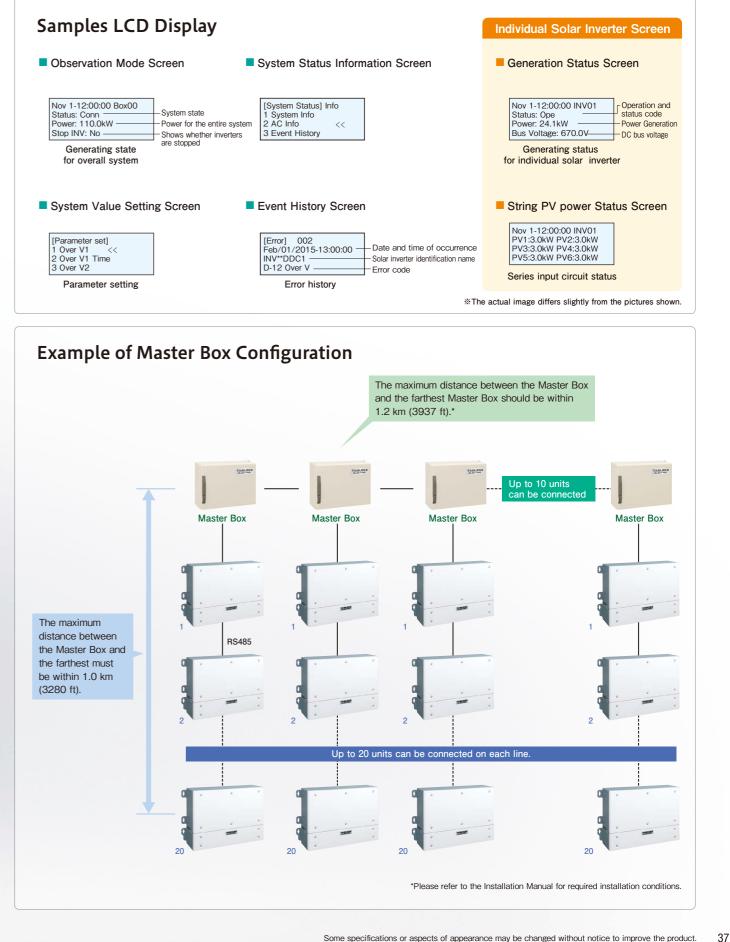

This sleek, portable and lightweight stand-alone inverter is designed for mobile applications. With protection and storage functions, the inverter can be used for a variety of purposes, such as unelectrified areas and power outages caused by disasters.


- **1** Modified Sine Wave Output
- 2 Various Protection Functions
- **3** Battery Status LED Display
- 4 High Efficiency


Specifications

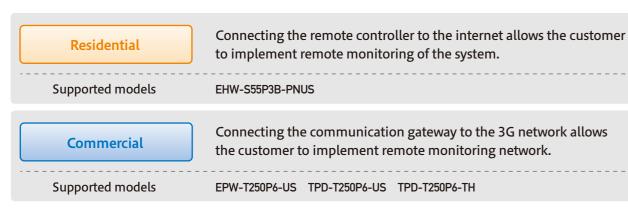
Input (DC)		TDS001	TDS002		
Solar Panel	Solar panel type	Polycrystalline Silicon	Polycrystalline Silicon		
(Recommended)	PV max. voltage	24 V	24 V		
Solar Panel to Battery	Operation voltage range	12 to 24 V	12 to 24 V		
	PV max. current	7 A	7 A		
Battery	Battery type	Lead-Acid Battery	Lead-Acid Battery		
(Recommended)	Storage capacity	40 Ah/65 Ah/120 Ah	40 Ah/65 Ah/120 Ah		
Battery to Inverter	Nominal voltage	12 V	12 V		
	Inverter voltage range	10.5 to 12.5 V	10.5 to 12.5 V		
	Inverter maximum current	18 A	18 A		
Output (AC)					
Inverter	Rated output power	150 VA/150 W	150 VA/150 W		
	Rated AC voltage	220 V	120 V		
	Nominal AC voltage range	198 to 242 V	108 to 120 V		
	Rated power frequency	50 Hz (±1 Hz)	60 Hz (±1 Hz)		
	Max. output current	0.8 A	1.5 A		
	Waveform	Modified Sine Wave	Modified Sine Wave		
Protection	1				
Alarm		Reverse Polarity	(Battery)		
		Over Temperature (Res	et Automatically)		
		High/Low Battery Voltage (Reset Automatically)		
		Over/Under Voltage (Reset Automatically)			
		Over Current/Over Load			
		Over Charge/Discharge (Reset Automatically)			
		Surge Prote			
Indicator		°			
Solar charger		Battery Chargin	a (Yellow)		
Battery level		Full Battery (
Dattory to rot		Medium Battery (Yellow)			
		Low Battery (
Inverter		Normal Operate			
		Alarm (Re			
Efficiency			,		
Max. Efficiency		Max. 93.6% (DC12.5 V, 65% output),	TBD		
		Тур. 91.2%			
General Data		105/100/75	E(7, 0/2, 0, in)		
Dimensions (W/H/D)		165/182/75 mm (6.			
Weight		1.5 kg (3.3			
Installation location		Indoor			
Operating temperature rang	e	±0°C to +45°C (+32			
Operating humidity range		0 to 95% (non-condensing)			
Topology		High frequency isolated transformer			
Cooling concept		Natural air c	ooling		
Feature					
DC Terminal		Pluggable Terminal Block × 4			
AC Terminal		AC Outlet Mounted Prong × 3			
Grounding terminal	Barris and the second second	Earth Ground Wall Mounted			
DC Fuse		Panel Mount Fuse Holder			
Display		LED Indicator			

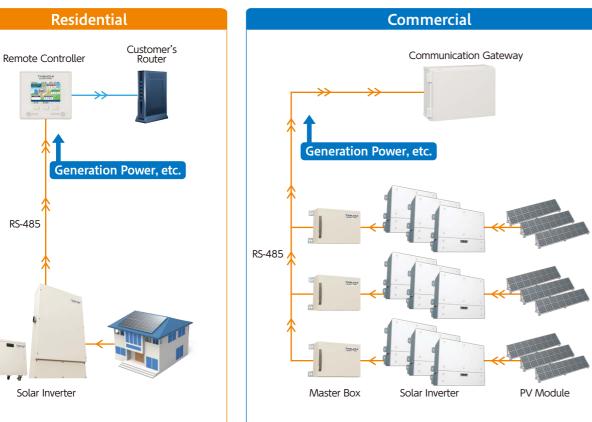
*² Maximum efficiency was not calculated at maximum load. *3 This inverter meets UL458 requirements.

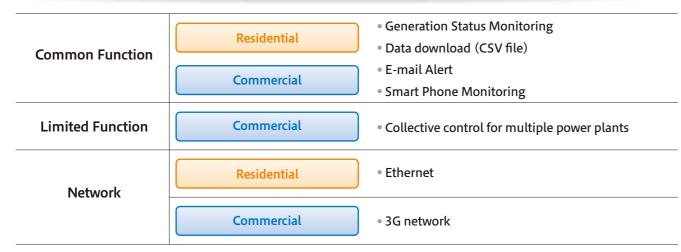

External control device for three-phase solar inverter

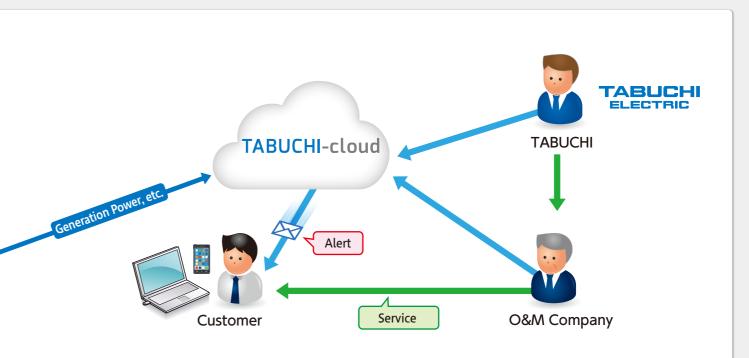
EOW-MBX03-US (compatible with EPW-T250P6-US/TPD-T250P6-US: Required) EOW-MBX04-TH (compatible with TPD-T250P6-TH: Required) Master Box Collective control for multiple solar inverters. **Basic Functions** TABUCHI Remote Control ELECTRIC Start/Stop, Re-Start of Stopped Inverters, and Parameter Setting. **ODisplay of Operating Status** The state of the inverter is indicated by the LED display on the Control Board. **③**Number of Solar Inverters Up to 20 solar inverters can be connected to a Master Box. Up to 10 Master Boxes may be networked together. Internal Structure Power SW Power switch to start Master Box. O 2 START/STOP Button \bigcirc Start/Stop operation of connected inverters. **3** Operating Button Changes modes and Setting. C 4 RE-START Button Use to manually recover when a malfunction has ÷, occurred. \bigcirc 6 RS485 COM Terminal 0 Inverter or Master Box are connected by a RS485 signal. 0 6 REMOTE Terminal Not Used (Optional). **Basic Specifications** RS485 Termination SW Electric termination ON needed for the Master Box Exterior dimensions: $480 \times 300 \times 191$ mm ($18.9 \times 11.8 \times 7.5$ in) in the end position. (dustproof and waterproof (Type 3R))

Weight: Approx. 12 kg (26 lb) Working temperature range: -20°C to +50°C (-4°F to +122°F) Rated input voltage: AC115 V (EOW-MBX03-US) AC220 V (EOW-MBX04-TH) Rated input current: 0.03 A (EOW-MBX03-US) 0.02 A (EOW-MBX04-TH) Power consumption: Max. 3 W

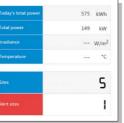

Installation method: Wall-mounted or rack-mounted

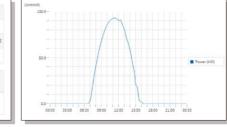

- 6 LCD Display Panel PV power Status, System Information, Parameter Set.
- 9 Master Box Address SW Sets the address of each Master Box when two or more Master Boxes are connected.
- TEMP Irradiance Terminal Connected to cables from the pyrano meter and temperature meter via 4 to 20 mA transducers. (optional)


Monitoring System (TABUCHI-cloud) for USA/CANADA and Thailand Market

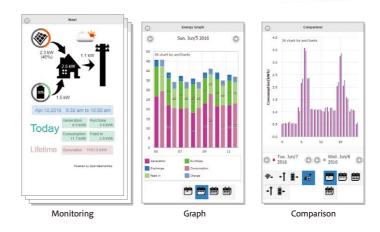


Basic Function





PC Screen



String Monitoring

Smart Phone Screen

Monitoring Generation by PC

Alabama Today's total power		261 WWh	Transition of power (site) Reload						
Auton Antenn Antenn Coloret Coloret Constant Con		and any second powers	201 KWYN	(Lerrark)					
		Tutal power	164 kW	200.0		1			
		Traduce	W/m ²						
		Temperature	°C						
				100-					· ····
		Sites	5						
			-						
Kang	14	Alert shes	2						
Kang	at urky iana	Alert sites	5	55-,	· · · · · · · · · · · · · · · · · · ·	1000 1000 1000 1000	2010 201	1200 mi	
Kansa Kentu Louisi	at urky iana				Download CoV		28-02 29-2	, 1200 ° 004	v
Kana Kwatu Louisi Maire	as why lana # Ske name	n downe typ	-	Search	Upwnioed CSV	Number of ext	action :	\$ cites	1 page
Kandi Koon, Louisi Maire te list	od wfey liana e Site rame Dirgunt	a Investor type Stor agree	e Duarter type	Search Country(WS	Download CSV	Number of ext Tratig's power@WWii Po	ación : nurr (NV)	S sites	1 page et ingenters
Kana Kont Louisi Maire te list Ximi	at why iana e Site name Deping California	1 Invester type Cite name Eco house (125 - GAW)	e. Examine Appe Single-phase	Search Country(MS) 3.0	Skale and the Download CSV States ElContection error	Number of ext Today's process(WH)	ación : ner AWI 00	S zites Incorton Ale	1 page
Kansa Konto Louisi Maire te list Xino Xino Xino	at why iana # Site name Degree California California	Tabuchi den Mr0000W100)	e. Puerter type Single-plane Three-plane/SkW	Country (MS) 3.0 175.0	Skal and out Download COV Status EContection error EContection error	Number of ext Tailing's present/Wild 0 0	action : (kH/) 0.0 0.0	S zites Incerting Ale 1 8	1 page et inserten 1 8
Kanaz Evon Lisuii Maire te list Ximi Ximi Ximi Ximi	at why ana you Ste name Celifornia Celifornia Celifornia	Exercise type Conclusion (DWC) Tabarcia entrol (DWW) Tabarcia entrol (DWW) Wolfs Each many PV ((DWC)	e: Excertor type Single-phase Three-phase25W Single-phase	5carch Copenny(045 30 175.9 23.9	Sear and adde Download COV Status EContection artic EContection artic EContection artic	Number of ext Trails/spinore/WW Pi 0 0 2	action : 00 00 15	S sites Incertion Jun 1 8 2	1 page et ingenters
Kansa Konto Louisi Maire te list Xino Xino Xino	at why iana # Site name Degree California California	Tabuchi den Mr0000W100)	e. Puerter type Single-plane Three-plane/SkW	Country (MS) 3.0 175.0	Skal and out Download COV Status EContection error EContection error	Number of ext Tailing's present/Wild 0 0	action : (kH/) 0.0 0.0	S zites Incerting Ale 1 8	1 page et inserten 1 8
Eanar Econ Louis Maire te list Xima Xima Xima Xima	at vrty iana v Sterame Caltonia Caltonia Caltonia Caltonia	Interior (p) Concernent Concernent Concernent Concernent Convernent Convernen	e Diserter type Sisgle-phase Three-phase25W Sisgle-phase Three-phase25W	5carch Coperação 175.0 125.0 125.0 125.0	west once once Download CoV Status ElConnection array ElConnection array ElConnection array ElConnection array ElConnection array	Number of enti- Tratig's present/WH Pr 0 0 2 138	action : 00 00 15 977	Stites Incerting Add 1 8 2 8	1 page et interfere 1 8 0 0

Commercial

Monitoring Data (Main)

Application	Monitoring Interval	Date Item		
Residential	30 min.	AC power generation Grid power generation Grid frequency Alert, etc		
Commercial	10 min.	AC power generation Grid power generation Grid frequency Alert Outside temperature (Option) Solar irradiance (Option)		
	Real time	Alert		

Japan Product Lineup

Product Name	Energy Source	Applications	Installation Location	Installation Method	Number of Strings
4.0 kW	Solar	Home Apartment	Outdoor	Wall-mounted	2
4.9 kW	Solar	Home Apartment	Outdoor	Wall-mounted	3
5.5 kW	Solar	Home Apartment Facility Power Plant	Outdoor	Wall-mounted	3 4
Single-phase 9.9 kW	Solar	Home Apartment Facility Power Plant	Outdoor	Wall-mounted	5
Single-phase 9.9 kW	Solar	Home Apartment Facility Power Plant	Outdoor	Wall-mounted	5
Three-phase 9.9 kW	Solar	Facility Factory Power Plant	Outdoor	Wall-mounted Rack-mounted	5
Three-phase 25 kW	Solar	Power Plant	Outdoor	Wall-mounted Rack-mounted	6
Three-phase 33 kW	Solar	Power Plant	Outdoor	Wall-mounted Rack-mounted	7
Three-phase 25 kW	Solar	Power Plant	Outdoor	Wall-mounted Rack-mounted	8
Hybrid Inverter PV: 5.5 kW Battery: 9.89 kWh	Solar Battery	Home Facility	Outdoor (Battery unit must be installed indoors)	Floor-mounted	3
Portable battery storage system Battery: 2.5 kWh	Battery	Home Facility Factory	Indoor	Floor-mounted	-
 Portable battery storage system Battery: 5.0 kWh	Battery	Home Facility Factory	Indoor	Floor-mounted	_

Topology

High Frequency Isolated Transformer

Transformer-less

Transformer-less

Transformer-less

High Frequency Isolated Transformer Display/Operation

Color LCD Remote Controller

Chassis-embedded Master Box

Chassis-embedded Master Box

Chassis-embedded Master Box

Chassis-embedded Master Box

Color LCD Remote Controller

Unit Panel

Unit Panel

Tabuchi Electric Global Network

Marschner Tabuchi Electric GmbH & Co. KG

Tabuchi Electronics Industry Co., Ltd. Tecno Electric Industry Co., Ltd.

Tabuchi Electric Co., Ltd.

Facilities in Japan

Tabuchi Electric Co., Ltd. head office

Please contact us by submitting online inquiry form.

Nissay Shin-osaka Bldg., 3-4-30 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan TEL: +81-6-4807-3500 FAX: +81-6-4807-3502

Tabuchi Electric Co., Ltd. Tokyo branch office Kinsan Bldg., 3-18-3 Kanda nishiki-cho, Chiyoda-ku, Tokyo, 101-0054, Japan TEL: +81-3-5259-6250 FAX: +81-3-5259-6251

Tabuchi Electric Co., Ltd. Chubu office Terminal Plaza, 61 Shirakawa-cho, Toyohashi City, Aichi, 441-8021, Japan TEL: +81-532-34-4550 FAX: +81-532-34-4551

Tabuchi Electronics Industry Co., Ltd. 1475 Wakakusa 1-chome, Otawara City, Tochigi, 324-0021, Japan TEL: +81-287-22-3885 FAX: +81-287-23-6090

Tecno Electric Industry Co., Ltd. 345 Tokawa, Hadano-city, Kanagawa, 259-1306, Japan TEL: +81-463-75-4100 FAX: +81-463-75-4109

Facilities outside Japan

Thai Tabuchi Electric Co., Ltd. 88 Moo 5 Bangna-Trad Highway, Tambol Bangsamuk, Amphur Bangpakong, Chachoengsao, 24130, Thailand

Bangkok Office

540 Mercury Tower, Unit 12A03 Floor 12A, Ploenchit Road, Lumpini, Pathumwan, Bangkok, 10330, Thailand TEL: +66-02-658-5593 FAX: +66-02-658-5594

Tabuchi Electric Hong Kong Ltd. Unit 2606, 26F, Miramar Tower, 132 Nathan Road, Tsimshatsui, Kowloon, Hong Kong TEL: +852-2563-9100 FAX: +852-2563-9616

Dongguan Tabuchi Electric Co., Ltd. No.2, Industrial Zone, Hetain Village Houjie Town, Dong Guan City, Guangdong Province, China TEL: +86-769-8583-2800 FAX: +86-769-8583-2801

Vietnam Tabuchi Electric Co., Ltd. Lot I3. Dai Dong Hoan Son Industrial Park, Bac Ninh Province, Vietnam TEL: +84-241-384-7435 FAX: +84-241-384-7437

Please contact us by submitting online inquiry form.

Korea Transformer Co., Ltd. 8th floor, DDS building, Doksan-Dong, Geumcheon-Gu, Seoul, Korea TEL: +82-2-856-8951 FAX: +82-2-864-2456

Yantai Dongshan Electric Co., Ltd. Qixia Economic Development Zone, Yantai, Shandong, China TEL: +86-535-557-3141 FAX: +86-535-557-3140

Jiangxi Bicai Tabuchi Transformer Co., Ltd. Chunshui RD. Yichun Economic Development Zone, Yichun City, Jiangxi, China TEL: +86-795-2170998 FAX: +86-795-2170996

Tabuchi Electric Company of America, Ltd. 5225 Hellyer Avenue, Suite 150 San Jose, CA, 95138, U.S.A. TEL: +1-408-224-9300

Toronto Office 151 Yonge Street, 11th Floor, Toronto, Ontario, Canada M5C 2W7

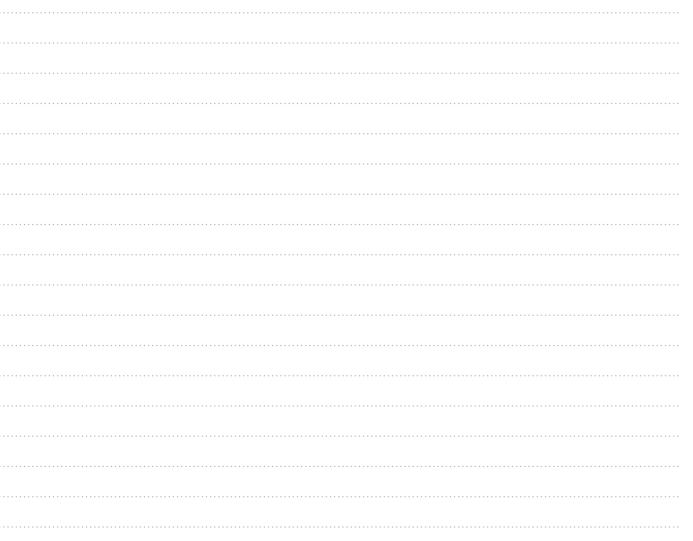
Marschner Tabuchi Electric GmbH & Co. KG Siemensstrasse 11 78564 Wehingen Germany TEL: +49-7426 609-0 FAX: +49-7426 609-10

Topics

We are developing new products with Geli

Solar inverter manufacturer Tabuchi Electric has partnered with Geli, a software provider for battery storage and microgrids, to provide a residential solar-plus-storage solution to accelerate the residential solar market.

Through this partnership, a solar-plus-storage solution will be created by combining Geli's software with Tabuchi's hardware to optimize grid performance.


Tabuchi's Eco Intelligent Battery System (EIBS) residential solar-plus-storage solution integrated with Geli's Energy Operating System software will systematically manage energy flow from the home to the grid when connected to solar installations and smart home devices such as smart thermostats and pool pumps.

About Geli

Geli provides software and business solutions to design, connect, and operate energy storage and microgrid systems. Geli's suite of products creates an ecosystem where project developers, OEMs, financiers, and project operators can deploy advanced energy projects using a seamless hardware-agnostic software platform. Geli ESyst™ is an online design tool for the analysis and design of energy storage and microgrids. Geli EOS™, short for Energy Operating System, is a software platform that allows for advanced functionality of any OEM equipment via Geli Energy Apps & Geli Energy Drivers. Geli GENI™, which stands for Global Energy Network Interface, is the portal through which systems are monitored for performance and can be aggregated for virtual power-plant services.

Memo

TABUCHI ELECTRIC

Please read this user's manual carefully prior to operation.

Safety Precautions

• We do not guarantee and will not repair solar inverters that have malfunctioned due to improper use that does not conform with the user manual, installation manual, precautions, etc. ·Do not connect life-sustaining medical devices to the inverter load as failure or malfunction of such devices may result in bodily injury or a direct threat to human life. ·Do not operate the inverter in a location where the inverter may cause bodily injury or result in a direct threat to human life. ·Do not expose the inverter to excessive steam, oily spray, smoke, dust, salt, corrosive materials, explosive/flammable gases, chemical agents, vibration, or fire. Please contact your distributor or installer for more details regarding installation. • Do not use products for any other purpose other than their intended use as listed in the catalog. (See the Lineup page.) • We recommend regular maintenance to ensure long-term use of the solar inverter.

- Catalog contents and product specifications may change without notice.
- Installation should be performed by qualified and licensed installers.
- Do not disassemble, alter, or modify any Tabuchi products.

